Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MARK(g(X1, X2, X3)) → MARK(X2)
MARK(b) → A__B
A__A1 → A__A
MARK(k) → A__K
A__A1 → A__H(a__f(a__a), a__f(a__b))
MARK(g(X1, X2, X3)) → A__G(mark(X1), mark(X2), mark(X3))
A__H(X, X) → MARK(X)
A__F(X) → MARK(X)
A__G(d, X, X) → A__A1
A__A1 → A__B
A__A → A__C
A__A → A__D
MARK(A) → A__A1
A__H(X, X) → A__K
A__A1 → A__F(a__b)
A__A1 → A__F(a__a)
MARK(z(X1, X2)) → MARK(X1)
MARK(f(X)) → MARK(X)
MARK(g(X1, X2, X3)) → MARK(X1)
A__F(X) → A__Z(mark(X), X)
MARK(h(X1, X2)) → A__H(mark(X1), mark(X2))
MARK(h(X1, X2)) → MARK(X1)
A__B → A__C
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__H(X, X) → A__F(a__k)
A__Z(e, X) → MARK(X)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
MARK(g(X1, X2, X3)) → MARK(X3)
MARK(h(X1, X2)) → MARK(X2)
MARK(a) → A__A
MARK(c) → A__C
MARK(f(X)) → A__F(mark(X))
MARK(d) → A__D
A__B → A__D
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(g(X1, X2, X3)) → MARK(X2)
MARK(b) → A__B
A__A1 → A__A
MARK(k) → A__K
A__A1 → A__H(a__f(a__a), a__f(a__b))
MARK(g(X1, X2, X3)) → A__G(mark(X1), mark(X2), mark(X3))
A__H(X, X) → MARK(X)
A__F(X) → MARK(X)
A__G(d, X, X) → A__A1
A__A1 → A__B
A__A → A__C
A__A → A__D
MARK(A) → A__A1
A__H(X, X) → A__K
A__A1 → A__F(a__b)
A__A1 → A__F(a__a)
MARK(z(X1, X2)) → MARK(X1)
MARK(f(X)) → MARK(X)
MARK(g(X1, X2, X3)) → MARK(X1)
A__F(X) → A__Z(mark(X), X)
MARK(h(X1, X2)) → A__H(mark(X1), mark(X2))
MARK(h(X1, X2)) → MARK(X1)
A__B → A__C
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__H(X, X) → A__F(a__k)
A__Z(e, X) → MARK(X)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
MARK(g(X1, X2, X3)) → MARK(X3)
MARK(h(X1, X2)) → MARK(X2)
MARK(a) → A__A
MARK(c) → A__C
MARK(f(X)) → A__F(mark(X))
MARK(d) → A__D
A__B → A__D
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 12 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
MARK(g(X1, X2, X3)) → MARK(X2)
MARK(g(X1, X2, X3)) → MARK(X1)
A__F(X) → A__Z(mark(X), X)
MARK(h(X1, X2)) → A__H(mark(X1), mark(X2))
MARK(h(X1, X2)) → MARK(X1)
A__A1 → A__H(a__f(a__a), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
MARK(g(X1, X2, X3)) → A__G(mark(X1), mark(X2), mark(X3))
A__H(X, X) → MARK(X)
A__F(X) → MARK(X)
A__G(d, X, X) → A__A1
A__H(X, X) → A__F(a__k)
A__Z(e, X) → MARK(X)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
MARK(A) → A__A1
MARK(g(X1, X2, X3)) → MARK(X3)
MARK(h(X1, X2)) → MARK(X2)
A__A1 → A__F(a__b)
A__A1 → A__F(a__a)
MARK(f(X)) → A__F(mark(X))
MARK(z(X1, X2)) → MARK(X1)
MARK(f(X)) → MARK(X)
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(g(X1, X2, X3)) → MARK(X2)
MARK(g(X1, X2, X3)) → MARK(X1)
MARK(h(X1, X2)) → A__H(mark(X1), mark(X2))
MARK(h(X1, X2)) → MARK(X1)
MARK(g(X1, X2, X3)) → A__G(mark(X1), mark(X2), mark(X3))
MARK(A) → A__A1
MARK(g(X1, X2, X3)) → MARK(X3)
MARK(h(X1, X2)) → MARK(X2)
Used ordering: POLO with Polynomial interpretation [25]:
POL(A) = 1
POL(A__A1) = 0
POL(A__F(x1)) = 2·x1
POL(A__G(x1, x2, x3)) = x1 + x2 + x3
POL(A__H(x1, x2)) = x1 + x2
POL(A__Z(x1, x2)) = x1 + x2
POL(MARK(x1)) = x1
POL(a) = 0
POL(a__A) = 1
POL(a__a) = 0
POL(a__b) = 0
POL(a__c) = 0
POL(a__d) = 0
POL(a__f(x1)) = 2·x1
POL(a__g(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(a__h(x1, x2)) = 1 + x1 + 2·x2
POL(a__k) = 0
POL(a__z(x1, x2)) = x1 + x2
POL(b) = 0
POL(c) = 0
POL(d) = 0
POL(e) = 0
POL(f(x1)) = 2·x1
POL(g(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(h(x1, x2)) = 1 + x1 + 2·x2
POL(k) = 0
POL(l) = 0
POL(m) = 0
POL(mark(x1)) = x1
POL(z(x1, x2)) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__F(X) → A__Z(mark(X), X)
A__A1 → A__H(a__f(a__a), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__H(X, X) → MARK(X)
A__F(X) → MARK(X)
A__G(d, X, X) → A__A1
A__H(X, X) → A__F(a__k)
A__Z(e, X) → MARK(X)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
A__A1 → A__F(a__b)
A__A1 → A__F(a__a)
MARK(f(X)) → A__F(mark(X))
MARK(z(X1, X2)) → MARK(X1)
MARK(f(X)) → MARK(X)
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__F(X) → A__Z(mark(X), X)
MARK(f(X)) → A__F(mark(X))
A__F(X) → MARK(X)
MARK(z(X1, X2)) → MARK(X1)
MARK(f(X)) → MARK(X)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
A__Z(e, X) → MARK(X)
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(f(X)) → A__F(mark(X))
MARK(f(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
A__F(X) → A__Z(mark(X), X)
A__F(X) → MARK(X)
MARK(z(X1, X2)) → MARK(X1)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
A__Z(e, X) → MARK(X)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( z(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__h(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__z(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__g(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( h(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( g(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
M( A__Z(x1, x2) ) = | 1 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
a__a → a__c
a__b → a__c
a__c → l
a__b → a__d
a__k → m
a__k → l
a__c → e
a__a → a__d
a__d → m
mark(a) → a__a
mark(A) → a__A
mark(c) → a__c
mark(b) → a__b
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__A → a__h(a__f(a__a), a__f(a__b))
a__g(d, X, X) → a__A
mark(e) → e
mark(l) → l
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
a__f(X) → a__z(mark(X), X)
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
a__z(e, X) → mark(X)
mark(d) → a__d
mark(k) → a__k
a__k → k
a__z(X1, X2) → z(X1, X2)
a__c → c
a__d → d
a__a → a
a__b → b
mark(m) → m
a__A → A
a__g(X1, X2, X3) → g(X1, X2, X3)
a__h(X1, X2) → h(X1, X2)
a__f(X) → f(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__F(X) → A__Z(mark(X), X)
MARK(z(X1, X2)) → MARK(X1)
A__F(X) → MARK(X)
A__Z(e, X) → MARK(X)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MARK(z(X1, X2)) → MARK(X1)
A__Z(e, X) → MARK(X)
MARK(z(X1, X2)) → A__Z(mark(X1), X2)
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- A__Z(e, X) → MARK(X)
The graph contains the following edges 2 >= 1
- MARK(z(X1, X2)) → MARK(X1)
The graph contains the following edges 1 > 1
- MARK(z(X1, X2)) → A__Z(mark(X1), X2)
The graph contains the following edges 1 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A__A1 → A__H(a__f(a__a), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__G(d, X, X) → A__A1
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A__A1 → A__H(a__f(a__a), a__f(a__b)) at position [] we obtained the following new rules:
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(a__f(a__a), a__f(a__c))
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(b))
A__A1 → A__H(a__f(a), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(a__d))
A__A1 → A__H(a__f(a__c), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__G(d, X, X) → A__A1
A__A1 → A__H(a__f(a__a), a__f(a__d))
A__A1 → A__H(a__f(a__c), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(a__f(a__a), a__f(a__c))
A__A1 → A__H(a__f(a__a), a__f(b))
A__A1 → A__H(a__f(a), a__f(a__b))
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__A1 → A__H(a__f(a__a), a__f(a__c))
The remaining pairs can at least be oriented weakly.
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__G(d, X, X) → A__A1
A__A1 → A__H(a__f(a__a), a__f(a__d))
A__A1 → A__H(a__f(a__c), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(a__f(a__a), a__f(b))
A__A1 → A__H(a__f(a), a__f(a__b))
Used ordering: Combined order from the following AFS and order.
A__A1 = A__A1
A__H(x1, x2) = x2
a__z(x1, x2) = x2
mark(x1) = x1
a__a = a__a
a__f(x1) = x1
a__b = a__b
a__d = a__d
A__G(x1, x2, x3) = x1
a__k = a__k
d = d
a__c = a__c
f(x1) = x1
b = b
a = a
l = l
m = m
e = e
A = A
a__A = a__A
c = c
a__h(x1, x2) = a__h
a__g(x1, x2, x3) = a__g
h(x1, x2) = h
g(x1, x2, x3) = g
z(x1, x2) = x2
k = k
Recursive path order with status [2].
Quasi-Precedence:
[aa, a] > [AA^1, ab, ad, ak, d, b, A, aA, ah, ag, h, g, k] > [ac, l, e, c]
[aa, a] > [AA^1, ab, ad, ak, d, b, A, aA, ah, ag, h, g, k] > m
Status: c: multiset
a: multiset
ab: multiset
ah: []
e: multiset
AA^1: multiset
k: multiset
ag: []
d: multiset
A: multiset
h: []
ad: multiset
aA: multiset
ak: multiset
ac: multiset
m: multiset
l: multiset
g: []
b: multiset
aa: multiset
The following usable rules [17] were oriented:
a__a → a__c
a__b → a__c
a__c → l
a__b → a__d
a__k → m
a__k → l
a__c → e
a__a → a__d
a__d → m
mark(a) → a__a
mark(A) → a__A
mark(c) → a__c
mark(b) → a__b
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__A → a__h(a__f(a__a), a__f(a__b))
a__g(d, X, X) → a__A
mark(e) → e
mark(l) → l
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
a__f(X) → a__z(mark(X), X)
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
a__z(e, X) → mark(X)
mark(d) → a__d
mark(k) → a__k
a__k → k
a__z(X1, X2) → z(X1, X2)
a__c → c
a__d → d
a__a → a
a__b → b
mark(m) → m
a__A → A
a__g(X1, X2, X3) → g(X1, X2, X3)
a__h(X1, X2) → h(X1, X2)
a__f(X) → f(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__A1 → A__H(a__f(a), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(b))
A__G(d, X, X) → A__A1
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
A__A1 → A__H(a__f(a__c), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(a__d))
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__A1 → A__H(a__f(a__c), a__f(a__b))
The remaining pairs can at least be oriented weakly.
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__A1 → A__H(a__f(a), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(b))
A__G(d, X, X) → A__A1
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
A__A1 → A__H(a__f(a__a), a__f(a__d))
Used ordering: Polynomial interpretation [25]:
POL(A) = 1
POL(A__A1) = 1
POL(A__G(x1, x2, x3)) = x1
POL(A__H(x1, x2)) = x1
POL(a) = 1
POL(a__A) = 1
POL(a__a) = 1
POL(a__b) = 1
POL(a__c) = 0
POL(a__d) = 1
POL(a__f(x1)) = x1
POL(a__g(x1, x2, x3)) = 1
POL(a__h(x1, x2)) = 1
POL(a__k) = 0
POL(a__z(x1, x2)) = x2
POL(b) = 1
POL(c) = 0
POL(d) = 1
POL(e) = 0
POL(f(x1)) = x1
POL(g(x1, x2, x3)) = 1
POL(h(x1, x2)) = 1
POL(k) = 0
POL(l) = 0
POL(m) = 0
POL(mark(x1)) = x1
POL(z(x1, x2)) = x2
The following usable rules [17] were oriented:
a__a → a__c
a__b → a__c
a__c → l
a__b → a__d
a__k → m
a__k → l
a__c → e
a__a → a__d
a__d → m
mark(a) → a__a
mark(A) → a__A
mark(c) → a__c
mark(b) → a__b
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__A → a__h(a__f(a__a), a__f(a__b))
a__g(d, X, X) → a__A
mark(e) → e
mark(l) → l
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
a__f(X) → a__z(mark(X), X)
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
a__z(e, X) → mark(X)
mark(d) → a__d
mark(k) → a__k
a__k → k
a__z(X1, X2) → z(X1, X2)
a__c → c
a__d → d
a__a → a
a__b → b
mark(m) → m
a__A → A
a__g(X1, X2, X3) → g(X1, X2, X3)
a__h(X1, X2) → h(X1, X2)
a__f(X) → f(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__G(d, X, X) → A__A1
A__A1 → A__H(a__f(a__a), a__f(b))
A__A1 → A__H(a__f(a), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(a__d))
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__A1 → A__H(a__f(a__c), a__f(a__b))
The remaining pairs can at least be oriented weakly.
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__G(d, X, X) → A__A1
A__A1 → A__H(a__f(a__a), a__f(a__d))
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(a__f(a__a), a__f(a__c))
A__A1 → A__H(a__f(a__a), a__f(b))
A__A1 → A__H(a__f(a), a__f(a__b))
Used ordering: Polynomial interpretation [25]:
POL(A) = 1
POL(A__A1) = 1
POL(A__G(x1, x2, x3)) = x1
POL(A__H(x1, x2)) = x1
POL(a) = 1
POL(a__A) = 1
POL(a__a) = 1
POL(a__b) = 1
POL(a__c) = 0
POL(a__d) = 1
POL(a__f(x1)) = x1
POL(a__g(x1, x2, x3)) = 1
POL(a__h(x1, x2)) = 1
POL(a__k) = 0
POL(a__z(x1, x2)) = x2
POL(b) = 1
POL(c) = 0
POL(d) = 1
POL(e) = 0
POL(f(x1)) = x1
POL(g(x1, x2, x3)) = 1
POL(h(x1, x2)) = 1
POL(k) = 0
POL(l) = 0
POL(m) = 0
POL(mark(x1)) = x1
POL(z(x1, x2)) = x2
The following usable rules [17] were oriented:
a__a → a__c
a__b → a__c
a__c → l
a__b → a__d
a__k → m
a__k → l
a__c → e
a__a → a__d
a__d → m
mark(a) → a__a
mark(A) → a__A
mark(c) → a__c
mark(b) → a__b
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__A → a__h(a__f(a__a), a__f(a__b))
a__g(d, X, X) → a__A
mark(e) → e
mark(l) → l
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
a__f(X) → a__z(mark(X), X)
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
a__z(e, X) → mark(X)
mark(d) → a__d
mark(k) → a__k
a__k → k
a__z(X1, X2) → z(X1, X2)
a__c → c
a__d → d
a__a → a
a__b → b
mark(m) → m
a__A → A
a__g(X1, X2, X3) → g(X1, X2, X3)
a__h(X1, X2) → h(X1, X2)
a__f(X) → f(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__A1 → A__H(a__f(a__a), f(a__b))
A__A1 → A__H(f(a__a), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(a__c))
A__A1 → A__H(a__f(a__d), a__f(a__b))
A__A1 → A__H(a__z(mark(a__a), a__a), a__f(a__b))
A__H(X, X) → A__G(mark(X), mark(X), a__f(a__k))
A__A1 → A__H(a__f(a), a__f(a__b))
A__A1 → A__H(a__f(a__a), a__f(b))
A__G(d, X, X) → A__A1
A__A1 → A__H(a__f(a__a), a__z(mark(a__b), a__b))
A__A1 → A__H(a__f(a__a), a__f(a__d))
The TRS R consists of the following rules:
a__a → a__c
a__b → a__c
a__c → e
a__k → l
a__d → m
a__a → a__d
a__b → a__d
a__c → l
a__k → m
a__A → a__h(a__f(a__a), a__f(a__b))
a__h(X, X) → a__g(mark(X), mark(X), a__f(a__k))
a__g(d, X, X) → a__A
a__f(X) → a__z(mark(X), X)
a__z(e, X) → mark(X)
mark(A) → a__A
mark(a) → a__a
mark(b) → a__b
mark(c) → a__c
mark(d) → a__d
mark(k) → a__k
mark(z(X1, X2)) → a__z(mark(X1), X2)
mark(f(X)) → a__f(mark(X))
mark(h(X1, X2)) → a__h(mark(X1), mark(X2))
mark(g(X1, X2, X3)) → a__g(mark(X1), mark(X2), mark(X3))
mark(e) → e
mark(l) → l
mark(m) → m
a__A → A
a__a → a
a__b → b
a__c → c
a__d → d
a__k → k
a__z(X1, X2) → z(X1, X2)
a__f(X) → f(X)
a__h(X1, X2) → h(X1, X2)
a__g(X1, X2, X3) → g(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.